Machine learning for postprocessing ensemble streamflow forecasts
نویسندگان
چکیده
Abstract Skillful streamflow forecasts can inform decisions in various areas of water policy and management. We integrate numerical weather prediction ensembles, distributed hydrological model, machine learning to generate ensemble at medium-range lead times (1–7 days). demonstrate the application as postprocessor for improving quality forecasts. Our results show that improve relative low-complexity (e.g., climatological temporal persistence) well standalone hydrometeorological modeling neural network. The gain forecast skill from is generally higher timescales compared shorter times; high flows low–moderate flows, warm season cool ones. Overall, our highlight benefits many aspects both reliability
منابع مشابه
Evaluation of bias-correction methods for ensemble streamflow volume forecasts
Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three biascorrection methods for ensemble streamflow volume forecasts. Al...
متن کاملA Technique for Incorporating Large-Scale Climate Information in Basin-Scale Ensemble Streamflow Forecasts
Water managers throughout the Western U.S. depend on seasonal forecasts to assist with operations and planning. In this study, we develop a seasonal forecasting model to aid water resources decision-making in the Truckee-Carson River System. We analyze large-scale climate information that has a direct impact on our basin of interest to develop predictors to spring runoff. The predictors are sno...
متن کاملPostprocessing of Medium Range Hydrological Ensemble Forecasts Making Use of Reforecasts
A hydrological ensemble prediction system is running operationally at the Royal Meteorological Institute of Belgium (RMI) for ten catchments in the Meuse basin. It makes use of the conceptual semi-distributed hydrological model SCHEME and the European Centre for Medium Range Weather Forecasts (ECMWF) ensemble prediction system (ENS). An ensemble of 51 discharge forecasts is generated daily. We ...
متن کاملMachine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts
Probabilistic quantitative precipitation forecasts challenge meteorologists due to the wide variability of precipitation amounts over small areas and their dependence on conditions at multiple spatial and temporal scales. Ensembles of convection-allowing numerical weather prediction models offer a way to produce improved precipitation forecasts and estimates of the forecast uncertainty. Thesemo...
متن کاملApplying Machine Learning for Ensemble Branch Predictors
The problem of predicting the outcome of a conditional branch instruction is a prerequisite for high performance in modern processors. It has been shown that combining different branch predictors can yield more accurate prediction schemes, but the existing research only examines selection-based approaches where one predictor is chosen without considering the actual predictions of the available ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hydroinformatics
سال: 2022
ISSN: ['1465-1734', '1464-7141']
DOI: https://doi.org/10.2166/hydro.2022.114